Cell separation based on size and deformability using microfluidic funnel ratchets.

نویسندگان

  • Sarah M McFaul
  • Bill K Lin
  • Hongshen Ma
چکیده

The separation of biological cells by filtration through microstructured constrictions is limited by unpredictable variations of the filter hydrodynamic resistance as cells accumulate in the microstructure. Applying a reverse flow to unclog the filter will undo the separation and reduce filter selectivity because of the reversibility of low-Reynolds number flow. We introduce a microfluidic structural ratchet mechanism to separate cells using oscillatory flow. Using model cells and microparticles, we confirmed the ability of this mechanism to sort and separate cells and particles based on size and deformability. We further demonstrate that the spatial distribution of cells after sorting is repeatable and that the separation process is irreversible. This mechanism can be applied generally to separate cells that differ based on size and deformability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism for Cell Separation Based on Size and Deformability Using Microfluidic Ratchets

We present a mechanism for separating cells based on size and deformability using microfluidic ratchets created using micrometer-scale funnel constrictions. The force required to deform individual cells through such constrictions is directionally asymmetric, enabling rectified transport from oscillatory flow of the bulk fluid. Combining ratcheting with simple filtration enables cell separation ...

متن کامل

Continuous Flow Deformability-Based Separation of Circulating Tumor Cells Using Microfluidic Ratchets.

Circulating tumor cells (CTCs) offer tremendous potential for the detection and characterization of cancer. A key challenge for their isolation and subsequent analysis is the extreme rarity of these cells in circulation. Here, a novel label-free method is described to enrich viable CTCs directly from whole blood based on their distinct deformability relative to hematological cells. This mechani...

متن کامل

Deformability and size-based cancer cell separation using an integrated microfluidic device.

Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell ...

متن کامل

Deformability-based cell classification and enrichment using inertial microfluidics.

The ability to detect and isolate rare target cells from heterogeneous samples is in high demand in cell biology research, immunology, tissue engineering and medicine. Techniques allowing label-free cell enrichment or detection are especially important to reduce the complexity and costs towards clinical applications. Single-cell deformability has recently been recognized as a unique label-free ...

متن کامل

Microfluidic biomechanical assay for red blood cells parasitized by Plasmodium falciparum.

Red blood cells parasitized by Plasmodium falciparum can be distinguished from uninfected cells and characterized on the basis of reduced deformability. To enable improved and simplified analysis, we developed a microfluidic device to measure red blood cell deformability using precisely controlled pressure. Individual red blood cells are deformed through multiple funnel-shaped constrictions wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Lab on a chip

دوره 12 13  شماره 

صفحات  -

تاریخ انتشار 2012